Metrics Beyond HemoglobinA1c

Diabetes Management Anno 2022

Prof. Dr. Pieter Gillard

Dept. Endocrinology, UZLeuven Dept. CHROMETA, KULeuven

Data in diabetes care and research

Decisions are driven by numbers

Gain **insight** into behaviour of patients

Drive clinical research

Type 1 diabetes data

Type 1 diabetes data

Strenght of HbA1c

High within person reliability

Assay standardization widely available

DCCT/EDIC Research Group. Arch Intern Med. 2009;169(14):1307-1316. Skyler JS. J. Endocrinol Metab Clin North Am. 1996;25(2):243-254.

HbA1c is an unreliable measure in hemoglobinopathies anemia iron deficiency pregnancy different races

HbA1c is an unreliable measure in hemoglobinopathies anemia iron deficiency pregnancy different races

HbA1c is an unreliable measure in hemoglobinopathies anemia iron deficiency pregnancy different races

HbA1c = 7% high glycemic variability low glycemic variability

Beck RW et al. Diabetes Care, 2017.

Type 1 diabetes data

... people with type 1 diabetes did not have many glucose data to make on-the-go therapy decisions

What is continuous glucose monitoring?

CGM data revolutionized the way people with T1D deal with their diabetes

New Metrics in Diabetes Management

New Metrics in Diabetes Management

TIME IN RANGE

TIME IN RANGE

New Metrics in Diabetes Management

TIME IN RANGE

Impact for patients

Easier to understand

Higher TIR = Often Lower HYPO + HYPER (not always; include Time in Hypo)

"Take the ball early"

New Metrics in Diabetes Management

TIR in Relation to HbA1c

TABLE 2. HEMOGLOBIN AIC IN % AND MMOL/MOL AT EACH DECILE OF TIME-IN-RANGE PER EQUATION IN THE FIGURE

Time-in-range	HbA1C (%)	HbA1C (mmol/mol)
0%	12.1	109
10%	11.4	101
20%	10.6	92
30%	9.8	84
40%	9.0	75
50%	83	67
60%	7.5	59
70%	6.7	50
80%	5.9	42
90%	5.1	32
100%	4.3	23

TIR in Relation to HbA1c

A. Estimation of AIC for a given TIR Level of CGM metric

	Baseline (N = 455)		Month 6 ($N = 545$)			
	Estimate	95% CI for the predicted value ^b	95% CI for the mean ^b	Estimate	95% CI for the predicted value ^b	95% CI for the mean ^b
			Estimated	AIC (%)		
TIR ⁷⁰⁻¹⁸⁰						
20%	9.4	(8.0, 10.7)	(9.2, 9.5)	8.8	(7.9, 9.8)	(8.7, 9.0)
30%	8.9	(7.6, 10.2)	(8.7, 9.0)	8.4	(7.5, 9.4)	(8.3, 8.5)
40%	8.4	(7.1, 9.7)	(8.3, 8.5)	8.0	(7.1, 9.0)	(8.0, 8.1)
50%	7.9	(6.6, 9.2)	(7.9, 8.0)	7.6	(6.7, 8.6)	(7.6, 7.7)
60%	7.4	(6.1, 8.8)	(7.4, 7.5)	7.2	(6.3, 8.2)	(7.2, 7.3)
70%	7.0	(5.6, 8.3)	(6.9, 7.0)	6.8	(5.8, 7.8)	(6.8, 6.9)
80%	6.5	(5.2, 7.8)	(6.4, 6.6)	6.4	(5.4, 7.4)	(6.3, 6.5)
90%	6.0	(4.7, 7.3)	(5.9, 6.2)	6.0	(5.0, 7.0)	(5.9, 6.1)

Increasing Importance of New CGM-based Metrics

International Consensus on Use of Continuous Glucose Monitoring

Diabetes Care 2017;40:1631–1640 | https://doi.org/10.2337/dc17-1600

in clinical practice, CGM metrics are appropriate as outcome parameters that complement HbA_{1c}

Increasing Importance of New CGM-based Metrics

guideline on clinical investigation of medicinal products in the treatment or prevention of diabetes mellitus

EMA Guideline CPMP/EWP/1080/00 Rev. 2, 29 January 2018

time in ranges: consensus targets

New outcome measures – time in ranges

CGM metrics	Target level
Number of days CGM worn	>14 days
Percentage of time CGM is active	>70%
Mean glucose	
GMI, %*	
Glycemic variability, %CV	≤36%
TIR: % time 70-180 mg/dL	>70%
Time in hyperglycemia	
% time >250 mg/dL	<5%
TAR: % time >180mg/dL	<25%
Time in hypoglycemia	
% time <54 mg/dL	<1%
TBR: % time <70 mg/dL	<4%
Llas of Analysistems Olympics Deefile for OOM new ort	

Use of Ambulatory Glucose Profile for CGM report

*GMI = 3.31 + 0.02392 x [mean glucose in mg/dL]. CGM, continuous glucose monitoring; GMI, glucose management indicator; CV, coefficient of variation; TIR, time in range; TAR, time above range; TBR, time below range. Adapted from (115).

New outcome measures – time in ranges

AGP Report

29 July 2021 - 25 August 2021 (28 Days)

LibreView

AMBULATORY GLUCOSE PROFILE (AGP)

AGP is a summary of glucose values from the report period, with median (50%) and other percentiles shown as if occurring in a single day.

DAILY GLUCOSE PROFILES Most recent 14 days. See Weekly Summary report for more days.

Each daily profile represents a midnight to midnight period with the date displayed in the upper left corner.

Case 1

GLUCOSESTATISTIEKEN EN -DOELEN			JD IN B	EREIKEN	
29 oktober 2020 - 25 november 2	28 Dage	n			
% tijd sensor is actief	100%	Г		- Heel hoog >250 mg/dL	33% (7u 55min)
Bereiken en doelen voor	Type 1 of Type 2 diabet	15			
Glucosebereiken Doelbereik 70-180 mg/dL	Doelen % waarden (uuridag) Hoger dan 70% (16u 48min)	250		Hoog	36%
Onder 70 mg/dL	Lager dan 4% (58min)	200		181 - 200 mg/aL	(ou semin)
Onder 54 mg/dL	Lager dan 1% (14min)				
Boven 180 mg/dL	Lager dan 25% (6u)			Doelbereik	30%
Boven 250 mg/dL	Lager dan 5% (1u 12min)	180		70 - 100 mg/dL	(/0 121111)
Elke verhoging van 5% in tijd binnen (70-180	mg/dL) bereik is klinisch gunstig.				
Gemiddelde glucose	218 mg/dl	70		Laag 54 - 69 mg/dL	1% (14min)
Glucosebeheer indicator (GMI)	8,5% of 70 mmol/n	ol 54			
Glucosevariatie	32,4%		_	- Heel laag	(Omin)
Gedefinieerd als percentage variatiecoëfficiënt (%CV); bereik ≤36%				-ter ingine	(unin)

AMBULATOIR GLUCOSEPROFIEL (AGP)

AGP is een overzicht van glucosewaarden van de rapportageperiode, met mediaan (50%) en andere percentielen die worden getoond alsof ze voorkomen op één enkele dag.

DAGELIJKSE GLUCOSEPROFIELEN De meest recente 14 dagen. Zie het wekelijks samenvaltingsrapport voor meerdere dagen.

Elk dagelijks profiel geeft een periode weer van middernacht tot middernacht waarbij de datum in de iinkerbovenhoek wordt weergegeven.

Hypo-fear:

- Late evening snack,
- Too little insulin

relation with chr. complications

Beck et al, Diabetes Care, 2019 Mar;42(3):400-405.

relation with chr. complications

relation with chr. complications

Jolien De Meulemeester et al, OP ATTD 2022

relation with chr. complications

^{*}p<0.05, **p<0.001.

After correction for sex, age, diabetes duration, BMI, blood pressure, lipid profile, smoking, using lipid lowering and antihypertensive agents.

Jolien De Meulemeester et al, OP ATTD 2022

relation with chr. complications

After correction for sex, age, diabetes duration, BMI, blood pressure, lipid profile, smoking, using lipid lowering and antihypertensive agents. After correction for the above + HbA1c.

Jolien De Meulemeester et al, OP ATTD 2022

relation with chr. complications

El Malahi et al The Journal of Clinical Endocrinology & Metabolism, 2022, Vol. 107, No. 2, e570-e581

TIR as Outcome in Randomised controlled trials

Randomised controlled trial – ALERTT1

who

6 multidisciplinary diabetes centres 254 adults with type 1 diabetes with isCGM isCGM vs rtCGM

what

glycaemic control quality of life acute diabetes complications

when

Jan 2019 – Sep 2022

6 months RCT

ALERTT1 – difference in time in range

Violin plots show distribution per group. Mean group difference (95% CI).

ALERTT1 – difference in HbA1c

Data represent least-squares mean with 95% CI. Mean group difference (95% CI).

Continuous glucose monitoring-based time-in-range using insulin glargine 300 units/ml versus insulin degludec 100 units/ml in type 1 diabetes: The head-to-head randomized controlled InRange trial

Tadej Battelino MD¹ IThomas Danne MD² Steve V. Edelman MD³ Pratik Choudhary MD⁴ Eric Renard MD⁵ Jukka Westerbacka MD⁶ Bhaswati Mukherjee MD⁶ Valerie Pilorget MD⁶ Mathieu Coudert MSc⁶Richard M. Bergenstal MD⁷

³UMC-University Children's Hospital, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia

²Diabetes Centre for Children and Adolescents, Children's and Youth Hospital "Auf Der Bult", Hannover, Germany

³University of California San Diego, La Jolla, California

⁴Diabetes Research Centre, University of Leicester, Leicester, UK

⁵Department of Endocrinology, Diabetes and Nutrition, Montpellier University Hospital, University of Montpellier, Montpellier, France

⁶Sanofi, Paris, France

⁷International Diabetes Center, HealthPartners Institute, Minneapolis

Correspondence

Tadej Battelino, MD, UMC-University Children's Hospital, Faculty of Medicine, University of Ljubljana, Ljubljana, 1000, Slovenia. Email: tadei.battelino@mf.uni-il.si

Funding information Sanofi

Abstract

Aim: To use continuous glucose monitoring (CGM)-based time-in-range (TIR) as a primary efficacy endpoint to compare the second-generation basal insulin (BI) analogues insulin glargine 300 U/ml (Gla-300) and insulin degludec 100 U/ml (IDeg-100) in adults with type 1 diabetes (T1D).

Materials and Methods: InRange was a 12-week, multicentre, randomized, activecontrolled, parallel-group, open-label study comparing glucose TIR and variability between Gla-300 and IDeg-100 using blinded 20-day CGM profiles. The inclusion criteria consisted of adults with T1D treated with multiple daily injections, using BI once daily and rapid-acting insulin analogues for at least 1 year, with an HbA1c of 7% or higher and of 10% or less at screening.

Results: Overall, 343 participants were randomized: 172 received Gla-300 and 171 IDeg-100. Non-inferiority (10% relative margin) of Gla-300 versus IDeg-100 was shown for the primary endpoint (percentage TIR \ge 70 to \le 180 mg/dl): least squares (LS) mean (95% confidence interval) 52.74% (51.06%, 54.42%) for Gla-300 and 55.09% (53.34%, 56.84%) for IDeg-100; LS mean difference (non-inferiority): 3.16% (0.88%, 5.44%) (non-inferiority *P* = .0067). Non-inferiority was shown on glucose total coefficient of variation (main secondary endpoint): LS mean 39.91% (39.20%, 40.61%) and 41.22% (40.49%, 41.95%), respectively; LS mean difference (non-inferiority) -5.44% (-6.50%, -4.38%) (non-inferiority *P* < .0001). Superiority of Gla-300 over IDeg-100 was not shown on TIR. Occurrences of self-measured and CGM-derived hypoglycaemia were comparable between treatment groups. Safety profiles were consistent with known profiles, with no unexpected findings. **Conclusions:** Using clinically relevant CGM metrics, InRange shows that Gla-300 is non-inferior to IDeg-100 in people with T1D, with comparable hypoglycaemia and safety profiles.

Retrospective RWE studies new insulins

Retrospective RWE studies new insulins

ORIGINAL ARTICLE

Glucose control using fast-acting insulin aspart in a real-world setting: A 1-year, two-centre study in people with type 1 diabetes using continuous glucose monitoring

```
Lisa Billion MD<sup>1</sup> | Sara Charleer PhD<sup>2</sup> | Laurens Verbraeken Junior Registrar<sup>1</sup> |
Mira Sterckx Junior Registrar<sup>1</sup> | Kato Vangelabbeek Junior Registrar<sup>1</sup> |
Nathalie De Block<sup>1</sup> | Charlien Janssen<sup>2</sup> | Kristof Van Dessel Nutritionist<sup>1</sup> |
Eveline Dirinck MD<sup>1</sup> | Frida Peiffer MD<sup>1</sup> | Nancy Bolsens RN<sup>1</sup> |
Chantal Mathieu MD<sup>2</sup> | Pieter Gillard MD<sup>2</sup> | Christophe De Block MD<sup>1</sup>
```

EMA = European Medicines Agency; RWD = real-world data; RWE = real-world evidence

Evolution of times in ranges at 6 and 12 mo (min/d)

Time (mo)

Type 1 diabetes data

Smart pens

Type 1 diabetes data

Patient-reported outcomes

important in person-centred care

information that comes directly from the person

captured by e.g. questionnaires or diaries

generate a lot of data

ALERTT1 – difference in quality of life

ALERTT1 – difference in quality of life

ALERTT1 – difference in quality of life

Type 2 diabetes data?

Conclusion

TIR is a valuable outcome parameter, both in clinical care and diabetes research

TIR targets are increasingly used by patients to evaluate glycemic control

Relation between TIR and complications is becoming clear, but the exact nature of the relationship (dependent/independent of HbA1c) is still unclear

Conclusion

Data determine how we evaluate, treat and follow our patients

People with diabetes are intensively using data to balance their glucose control during daily life

Clinical research is now unthinkable without the use of data

Other data such as patient reported outcome measure are becoming part of integrated care and research

Data from smart pens will expand the use of insulin data to people on MDI

Digitalisation of diabetes data has changed the diabetes world forever... and will continue to do so in the upcoming years